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The aging part Rag�t ,s� of the impulsive response function of the two-dimensional ferromagnetic Ising
model, quenched below the critical point, is studied numerically employing an algorithm without the imposi-
tion of the external field. We find that the simple scaling form Rag�t ,s�=s−�1+a�f�t /s�, which is usually believed
to hold in the aging regime, is not obeyed. We analyze the data assuming the existence of a correction to
scaling. We find a=0.273±0.006, in agreement with previous numerical results obtained from the zero field
cooled magnetization. We investigate in detail also the scaling function f�t /s� and we compare the results with
the predictions of analytical theories. We make an ansatz for the correction to scaling, deriving an analytical
expression for Rag�t ,s�. This gives a satisfactory qualitative agreement with the numerical data for Rag�t ,s� and
for the integrated response functions. With the analytical model we explore the overall behavior, extrapolating
beyond the time regime accessible with the simulations. We explain why the data for the zero field cooled
susceptibility are not too sensitive to the existence of the correction to scaling in Rag�t ,s�, making this quantity
the most convenient for the study of the asymptotic scaling properties.

DOI: 10.1103/PhysRevE.72.056103 PACS number�s�: 05.70.Ln, 75.40.Gb, 05.40.�a

I. INTRODUCTION

A powerful tool in the study of slowly relaxing systems is
the extension of the fluctuation dissipation theorem �FDT� to
off-equilibrium conditions. The relation between the re-
sponse and the autocorrelation function has been shown to
encode basic properties of the dynamics �1� and of the equi-
librium state �2�. However, while the autocorrelation func-
tion C�t ,s� has been studied for a long time and, in some
systems, is well understood, the knowledge of the response
function R�t ,s� remains comparatively poor.

In the prototypical case, considered here, of nondisor-
dered coarsening systems quenched below the critical tem-
perature, general properties of C�t ,s� and R�t ,s� may be in-
ferred from the structure of the configurations. It is well
known, in fact, that in the late stage of phase ordering the
interior of the growing domains is equilibrated, while their
boundary is out of equilibrium. Accordingly, a distinction
between bulk and interface fluctuations can be made. For the
autocorrelation function this leads to the splitting �3–6�

C�t,s� = Cst�t − s� + Cag�t,s� �1�

where Cst�t−s� is the contribution from the interior of do-
mains, behaving as the equilibrium autocorrelation function
Ceq�t−s� of the ordered state at the final temperature T of the
quench, while Cag�t ,s� is the off-equilibrium aging contribu-
tion, coming from the interfaces. Similarly, for the response
function one has

R�t,s� = Rst�t − s� + Rag�t,s� �2�

and the stationary contributions Rst�t−s� and Cst�t−s� are
related by the FDT

TRst�t − s� =
�Cst�t − s�

�s
. �3�

For s large, Cag�t ,s� obeys the simple aging scaling form

Cag�t,s� = s−bg�x� �4�

with b=0 and x= t /s �6–8�. Taking s=0 and t large, Cag�t ,0�
decays algebraically as Cag�t ,0�� t−�/z, where � is the
Fisher-Huse exponent �9� and z is the dynamic exponent
regulating the growth of the characteristic size L�t�� t1/z of
domains. Assuming that the same behavior holds also for
s�0 �10� gives g�x��x−�/z, for x�1. These properties of
C�t ,s�, as mentioned above, are well understood and well
documented by both analytical and numerical results.

By analogy, the response function is also expected to
obey, for large s, a simple aging scaling form

Rag�t,s� = s−�1+a�f�x� �5�

with

f�x� � x−�R/z �6�

for x�1. Evidence that this is the case comes from the
few models tractable by analytical methods �4,11–15�. In
the large majority of cases, where information can be ex-
tracted only from numerical simulations, investigating R�t ,s�
is considerably more difficult than C�t ,s�. The reason is that
R�t ,s� is much more noisy than C�t ,s�. A possible way
around this difficulty is to study the less noisy integrated
response functions �IRFs�, such as the zero field cooled
�ZFC� magnetization
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��t,tw� = �
tw

t

ds R�t,s� �7�

or the thermoremanent magnetization �TRM�

��t,tw� = �
0

tw

ds R�t,s� . �8�

However, if resorting to the IRF does indeed cut down the
noise, it has turned out that recovering R�t ,s� from the IRF is
a delicate task which involves more than one subtlety �see
Ref. �16� and Sec. II of this paper�. As a result, so far, in the
literature no consensus has been reached either on the expo-
nent a or on the form of the scaling function f�x�. Therefore,
it seems that the issue of the properties of R�t ,s� can be
settled only by going to its direct measurement. Recently,
this has become feasible after the introduction of algorithms
�17–19� for the computation of the response function without
applying an external perturbation. This speeds the simulation
to such an extent that the direct measurement of R�t ,s� has
become accessible �17–20�.

In this paper we present results for R�t ,s� in the two-
dimensional Ising model obtained with our algorithm �19�.
The outcome is quite rich and interesting. We find the unex-
pected result that in the d=2 Ising model the simple scaling
form �5� is not enough to represent the data, but a large
correction term is needed, up to the longest times we have
reached in the simulations. The quality of the data allows us
to detect and analyze this correction and, by taking it prop-
erly into account, to make statements on the exponent a and
the scaling function f�x� appearing in Eq. �5�.

The paper is organized as follows. In Sec. II we summa-
rize the problem of the exponent a. In Sec. III we recall the
basic features of the measurement of the response function
without applying an external perturbation and the method we
use to isolate Rag�t ,s� in Eq. �2�. In Sec. IV we present and
discuss the numerical results for Rag�t ,s�. In particular, we
show the existence of a large preasymptotic scaling correc-
tion, we extract the value of the exponent a, and we analyze
the scaling function f�x�. In Sec. V, we investigate the impli-
cations of the structure of Rag�t ,s� for the properties of the
IRFs and we compare our predictions with the numerical
simulations of these quantities. This gives further insight into
the problem of the retrieval of R�t ,s� from the IRFs. Finally,
in Sec. VI we draw the conclusions.

II. THE EXPONENT a

Before entering the presentation of data and results,
we recall briefly what is the problem with the exponent a
in Eq. �5�.

�1� The straightforward substitution of Eq. �5� into Eqs.
�7� and �8� yields the scaling forms of the aging parts of
the IRFs:

�ag�t,tw� = tw
−a�F��y� �9�

and

�ag�t,tw� = tw
−a�F��y� �10�

with

a� = a� = a �11�

and y= t / tw.
�2� An intuitively appealing argument, originally intro-

duced by Barrat �21�, predicts that �ag�t , tw� ought to be pro-
portional to the density of defects at the time tw, which goes
as L�tw�−n, with n=1 and 2 for a scalar and vectorial order
parameter, respectively. Using Eq. �11�, this leads to the di-
mensionality independent result

a� = a� = a = n/z �12�

since, we recall, the exponent z in the quenches below TC
does not depend on d. For systems without conservation of
the order parameter, as considered in this paper, z=2 �7�.

�3� Contrary to the previous statement, all available ana-
lytical results, which include the exact solutions of the large
N model �4� and of the d=1 Ising model �11,12�, as well as
approximate calculations �13–15�, show that a depends lin-
early on dimensionality according to

a =
n

z

d − dL

dU − dL
�13�

where dL is the lower critical dimension of the statics and
dU�dL is a dimensionality whose significance becomes clear
as soon as ZFC magnetization is considered. In fact, from
these analytical calculations it comes out that the relation
between a� and a is not as simple as in Eq. �11�. Rather, it
must be replaced by

a� = �a as in Eq . �13� for d � dU,

n/z with logarithmic corrections for d = dU,

n/z for d � dU.
�

�14�

This behavior of a� is due to the existence of an irrelevant
variable in �ag�t , tw�, which becomes dangerous for d�dU

�4,16�. In the large N model the above formula holds with
�n=2,dL=2,dU=4�, while in the approximate calculations
with scalar order parameter of Refs. �13–15� �n=1, dL=1,
dU=2�.

�4� The problem of the exponent a, then, is whether Eq.
�13� is a peculiarity of just those cases where analytical re-
sults are available, the generic behavior being that of Eq.
�12�, or, vice versa, it is Eq. �13� that captures the generic
behavior, revealing thereafter that the argument leading to
Eq. �12� does miss some important feature in the mechanism
of the response.

In order to answer the questions one has to investigate as
many systems as possible, with the aim of putting together
the generic picture. This can be done only by numerical
methods. We have carried out such a program performing
simulations and measuring a� in several systems with con-
served and nonconserved dynamics, with both scalar and
vectorial order parameter, at different dimensionalities �22�.
The large body of results that we have obtained does indeed
indicate, quite convincingly in our opinion, that Eq. �14� is of

CORBERI, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E 72, 056103 �2005�

056103-2



general validity, with dU=3 �23� and 4 for systems with sca-
lar and vector order parameter, respectively.

This conclusion is challenged, mainly on the basis of the
measurement of a� from TRM in the Ising model with d=2
and 3 �24�, which seems to agree with Eq. �12�. In other
words, the investigations of ZFC and TRM seem to produce
different results. We have explained in detail elsewhere �16�
that the difference is only apparent and is due to the fact that
while the data for ZFC are asymptotic, those for TRM are
not. To us, the interesting question remaining open is not
anymore what is the value of a, but what is the physics
behind Eq. �13�. However, as of yet this is not a shared
conclusion �25–27�. So what emerges from this brief account
of the problem is that working with the IRFs is a tricky
business, because it has opened the somewhat intricate prob-
lem of why ZFC and TRM seem to give different results.
Therefore, in order to make progress, a fresh start is needed.
In this respect, the direct numerical study of R�t ,s�, with
these algorithms, seems well suited to the task. We shall
concentrate on the d=2 Ising model, where discrimination
between Eqs. �12� and �13� ought to be easier, since the
difference in the predicted values of a is quite large

a = 	1/2 from Eq . �12� ,

1/4 from Eq . �13� .

 �15�

III. THE ALGORITHM

A. Measurement of the response without applying a
perturbation

The basic idea in the methods of �17–19� for the measure-
ment of the response function without applying the external
perturbation is to relate R�t ,s� to some correlation function
of the unperturbed dynamics, in much the same way as in the
equilibrium FDT. In this paper we will use our method in-
troduced in �19�, since we have checked that it is numerically
more efficient. Let us briefly describe it, referring to �19� for
details.

We consider a spin system with Hamiltonian H�	�, where
�	� is a generic configuration of the spin variables 	i= ±1.
The response function is defined by

R�t,s� = lim

s→0

1


s
� ��	i�t�


�hi
�

h=0
�16�

where hi is a magnetic field acting on the ith site during the
time interval �s ,s+
s�, and the right-hand side does not de-
pend on i due to space translational invariance. Computing
�	i�t�
 by means of the master equation and inserting the
result into Eq. �16�, one arrives at

TR�t,s� =
1

2
lim


s→0
�C�t,s + 
s� − C�t,s�


s
− �	i�t − 
s�Bi�s�
�

�17�

where Bi enters the evolution of the magnetization according
to

d�	i�t�

dt

= �Bi�t�
 . �18�

This result holds in complete generality for generic Hamil-
tonian and transition rates, with or without conservation of
the order parameter. In the single spin flip dynamics

Bi�t� = 2	i�t�w��	� → �	i�� �19�

where w��	�→ �	i�� is the transition rate between two con-
figurations differing for the value of the spin on the site i. In
the simulations time is discretized by single updates which,
measuring time in Monte Carlo steps, occur on the micro-
scopic time scale �=1/N. The best numerical approximation
to the limit 
s→0 in Eq. �17� is obtained by taking 
s=�,
which gives

TR�t,s� =
1

2
�C�t,s + �� − C�t,s�

�
− �	i�t − ��Bi�s�
� .

�20�

In addition to R�t ,s�, in the following we will also be inter-
ested in the general IRF defined by �16�

��t,�t̃,tw�� = �
tw

t̃

R�t,s�ds �21�

which corresponds to the application of the perturbation be-
tween the times tw and t̃
 t. For this quantity, Eq. �20� is
replaced by

T��t,�t̃,tw�� =
1

2
�C�t, t̃� − C�t,tw�� −

�

2 �
s=tw

t̃

�	i�t − ��Bi�s�
 ,

�22�

where the sum �s=tw
t̃ is over the discrete times in the interval

�tw , t̃�.
Despite the advantages of the method, the computation of

the impulsive response R�t ,s� remains a very demanding nu-
merical task. In order to improve the signal to noise ratio,
therefore, we have found it convenient to consider, instead of
R�t ,s�, the quantity ��t , �s+� ,s�� with � /s�1. Assuming for
R�t ,s� the scaling form �5�, to first order in � /s one has

��t,�s + �,s�� = R�t,s��� −
�2

s
f1�x� + ¯� �23�

with f1�x�= �1/2���1+a�+x�d ln f�x�� /dx�. For �=1, ��t , �s
+� ,s�� differs from R�t ,s� by a correction of order 1 /s,
which we have checked to be always negligible in our simu-
lations. Therefore, in the following, whenever results for
R�t ,s� will be presented, it is understood that the data are
obtained with this procedure, if no other specification is
made.

In the following we shall use the above formulas for the
d=2 Ising model with nearest neighbor interaction and
evolving with Glauber dynamics.
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B. The aging contribution

In this section we discuss an auxiliary dynamics, referred
to as no bulk flip �NBF�, which is used �14,16,22,28� to
isolate the aging part Rag�t ,s� of the response function ap-
pearing in Eq. �2�.

We introduce a classification of the degrees of freedom by
making the distinction between bulk and interface spins. A
spin 	i is regarded as belonging to the bulk of a domain if it
is aligned with all its nearest neighbors. In the NBF algo-
rithm bulk spins cannot flip. With this rule the interior of
domains orders rapidly and all that is left is interface dynam-
ics. Since in coarsening kinetics the aging contribution
comes exclusively from the boundary of domains, measuring
quantities in a simulation with the NBF rule yields the aging
behavior.

In order to illustrate this idea, let us consider the autocor-
relation function. Denoting with 	i

NB�t� the value of the spin
evolving with NBF dynamics, the quantity

CNB�t,s� = M2�	i
NB�t�	i

NB�s�
 , �24�

where M is the equilibrium spontaneous magnetization
at the temperature T, is expected to coincide with Cag�t ,s�.
The M2 factor in front of the definition �24� is needed,
recalling �4–6� that Cag�t ,s� falls from M2 �the Edwards-
Anderson order parameter� to zero. According to the discus-
sion of Sec. I, Cst�t−s� coincides with the equilibrium corre-
lation Ceq�t−s�, which decays from 1−M2 to zero. In Fig. 1
we have made the comparison between the stationary parts
of C�t ,s� computed in two different ways. In the first case we
measure directly Ceq�t−s� in the equilibrium state prepared
at the temperature T /J=2.2�M2�0.616�. We recall that the
critical temperature is given by TC /J=2.269 18, where J is
the nearest neighbor coupling constant. The second prescrip-
tion is of calculating the autocorrelation function CNB�t ,s� in
the quench from an initial disordered state, corresponding to
an infinite temperature, to the same final temperature T with
the NBF rule, and then subtracting it from C�t ,s�, computed
with the full dynamics. If the NBF algorithm correctly iso-
lates the aging part of the dynamics what is left is the sta-

tionary term C�t ,s�−CNB�t ,s�=Ceq�t−s�. However, one does
not expect this to be satisfied at all times. The reason is that
a sharp separation between two independent components,
bulk and interface, applies only when L�t� is sufficiently
large �4,29�. Actually, the larger the domains are, the larger is
the average distance from a bulk spin to the nearest interface,
so that they are more effectively decoupled. The data of Fig.
1 show a convergence of C�t ,s�−CNB�t ,s� toward Ceq�t−s�
as s increases, in agreement with the previous discussion.
This implies that, for large s, the NBF algorithm does isolate
the aging part.

One arrives at the same conclusion by considering the
response function. The stationary part Req�t−s� decays to
zero on a characteristic microscopic time. Then, by using s
and x as independent variables �which we will do from now
on� and denoting with R�x ,s� the response function in terms
of these variables, in the limit of large s the stationary part
gives a contribution only for x�1. Therefore, for sufficiently
large s and x�1, one has R�x ,s��Rag�x ,s�. If the NBF al-
gorithm isolates the aging contribution, the response
RNB�x ,s� obtained with the NBF rule and R�x ,s�, measured
using the usual dynamics, should coincide for large s. In
order to check this, we have computed R�x ,s� and RNB�x ,s�
for a system of 10002 spins, quenched from the initial disor-
dered state, corresponding to an infinite temperature, to the
final temperature T /J=1.5�M2�0.9732�. We have consid-
ered several values of s ranging from s=100 to 1600 and
times t�s up to 5000. More precisely, we have used �and we
shall use in the following� values of s generated from
sn=100+Int�1.5n� with n ranging from 1 to 18. The range of
times considered belongs to the scaling regime of the system.
The results in Fig. 2 show that R�x ,s� and RNB�x ,s� coincide
within the statistical errors. Small differences can be detected
only for the smallest values of s. This is expected since, as
anticipated, the agreement improves with increasing s.

In conclusion, the analysis of both the autocorrelation and
the response function demonstrates the reliability of the NBF
algorithm. Moreover, this algorithm has the advantage of
speeding up considerably the simulations, since only the

FIG. 1. Plot of the difference C�t ,s�−CNB�t ,s� for s=6�102,
2�103, 104 ,5�104 �from bottom to top� showing the convergence
toward Ceq�t−s� � bold curve� as s increases.

FIG. 2. Rag�x ,s� �continuous lines� obtained with the NBF al-
gorithm and R�x ,s� �squares� obtained with the full quench dynam-
ics are plotted for s=111, 229, 537, 1085, 1577 from top to bottom.
Circles represent the fit according to Eq. �46�.

CORBERI, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E 72, 056103 �2005�

056103-4



fraction of spins on the interfaces must be updated. All the
results presented in the following have been obtained with
this technique.

IV. SCALING OF Rag„x ,s…

The first task is to check the scaling properties of
Rag�x ,s�. If Eq. �5� was obeyed the curves for s1+aRag�x ,s�,
obtained for different values of s and a suitable a, should
collapse on a single master curve. However, a rough inspec-
tion of Fig. 2 already shows that this is not the case, since the
various curves cannot be superimposed by a simple vertical
translation. We make this more precise in Fig. 3, where one
can see clearly that there is no collapse for neither one of the
two values of a proposed in Eq. �15�. For a=1/4 the collapse
is rather good for small x, but gets worst with increasing x.
For a=1/2 the collapse is bad everywhere, except for x�4.

A. The effective exponent aeff
R
„x ,s… and the value of a

In order to make these considerations quantitative we in-
troduce the effective exponent defined by

1 + aef f
R �x,s� = − � � ln Rag�x,s�

� ln s
�

x

. �25�

Numerically, for a chosen value of x, aef f
R �x ,s� is given by the

local slope of the plot of ln ln Rag�x ,s� against ln s in a
selected interval Is around s. This interval must be chosen
small with respect to the range of s over which aef f

R �x ,s�
varies appreciably. However, the smaller the interval Is the
more noisy gets aef f

R �x ,s�. On the basis of the data available
from the simulations, the best compromise between the
needs of having a local quantity and of lowering the noise
has been reached by taking Is spanning over four consecutive
values of s �30�. The result is displayed in Fig. 4, where
symbols with error bars represent the numerical values of
aef f

R �x ,s�, obtained for the three different Is with the four
values of s indicated in the legend. The continuous curves
have been obtained from a fitting procedure, which will be
discussed in Sec. IV C. If Eq. �5� did hold, we should have

found a flat effective exponent, i.e., aef f
R �x ,s�=a independent

of x and s. Instead, the data for aef f
R �x ,s� show the following

features.
�1� Fixed s. For fixed s, there is a strong dependence on x,

revealing that Eq. �5� is not obeyed. Furthermore, the curves
display a discontinous behavior at x=1. The equal times
value at x=1, ranging from aef f

R �1,s�=−0.55 to −0.53, de-
pending on the Is considered, is separated by a jump from the
smoothly increasing curve starting around aef f

R �1+,s�=0.30.
By x=1+ we denote the smallest value of x�1 used in the
simulations. For larger values of x, aef f

R �x ,s� keeps growing
continuously. The longest set of x data, corresponding to Is
with the smallest values of s, shows the possible saturation to
an asymptotic finite value aef f

R �� ,s��aef f
R �1+,s�. This behav-

ior of aef f
R explains immediately why the attempts to collapse

the data with a fixed value of a, as in Fig. 3, do fail except in
a restricted range of x.

�2� Fixed x. The size of the error bars makes it difficult to
detect an s dependence for fixed x, except in the region of
short time difference x
2, where with the first two Is the
decrease of aef f

R �x ,s� upon increasing s exceeds the error
�Fig. 5�. For larger values of x, error bars overlap and no
statement can be made.

Therefore, Eq. �5� is not obeyed and we make the assump-
tion that the deviation is due to a correction to scaling of the
form

Rag�x,s� = R1�x,s� + R2�x,s� = s−�1+a�f�x� + s−�1+c�h�x�
�26�

where necessarily c�a, if the new term has to be subdomi-
nant. Having made this assumption, from Eq. �25� it follows
that

FIG. 3. �Color online� Failure of collapse of the curves of Fig. 2
with a=1/4 �lower set� and 1/2 �upper set�.

FIG. 4. �Color online� Symbols with error bars represent
aef f

R �x ,s� obtained from the simulation data, as local slopes of
ln R�x ,s� against ln s over the four values of s specified in the
legend. Continuous curves are the plot of aef f

R �x ,s� obtained from
the fitting formula �46� for the same s used in the simulations. The
frame is magnified in Fig. 5. The inset shows aef f

R �x ,s� from for-
mula �46� over a range s=3�102, 103, 104, 105, 106 �from top to
bottom� that cannot be reached in the simulation.
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1 + aef f
R �x,s� = �1 + a��1 + ��1 + c�/�1 + a��s−�c−a���x�

1 + s−�c−a���x� �
�27�

where

��x� = h�x�/f�x� . �28�

Let us now pause to explore the consequences of this for-
mula. From Eq. �27� it follows that aef f

R �x ,s�→a from above
as s→�, for any fixed x. As pointed out previously, for those
values of x where the size of errors is small enough, the
decrease of aef f

R �x ,s� with increasing s is confirmed by the
simulations �Fig. 5�. Therefore, the smallest measured value
of aef f

R �x ,s� overestimates a. Excluding the value at x=1, for
the reasons which will be explained in Sec. IV B, we have

a 
 aef f
R �1+� = 0.32 ± 0.01 �29�

where for aef f
R �1+� we have taken the value at x=1+, corre-

sponding to the intermediate Is set. Comparing with Eq. �15�,
we find that this result is compatible with Eq. �13� and rules
out Eq. �12�. This conclusion has been reached with the sole
hypothesis that a correction to scaling term needs to be taken
into account. We have made no assumptions either on the
form of h�x� or on the value of c, except for the obvious
requirement c�a. In a short while we shall refine consider-
ably the above estimate of a, obtaining a value much more
close to the 1/4 predicted by Eq. �13�.

B. Analysis of R1„x ,s… and R2„x ,s…

Let us go further with the analysis of Eq. �27�, identifying
the properties of the scaling functions f�x� and h�x�, which
must be obeyed in order to reproduce the observed features
of aef f

R �x ,s�. Notice that Rag�x ,s�, being a response function,
must vanish for large x. This requires that also f�x� and h�x�
must vanish for large x. Therefore, the saturation to the finite
asymptotic value aef f

R �� ,s��aef f
R �1+,s�, which is suggested

by Fig. 4, can occur only if ��x� diverges for large x, that is,

if f�x� decays faster than h�x�. This has interesting conse-
quences. First of all we get

aef f
R ��,s� = c �30�

independent of s. Then, the correction to scaling contribution
R2�x ,s� is subdominant for fixed x and large s, but becomes
dominant for fixed s and large x. Which of the two contribu-
tions R1�x ,s� and R2�x ,s� is dominant and which is subdomi-
nant, depends on the choice of which variable is kept fixed
and which is let to grow. More precisely, the condition

R1�x,s�
R2�x,s�

=
s�c−a�

��x�
= 1 �31�

defines the crossover curve x̄�s� which divides the �s ,x�
plane �Fig. 6� in the two regions �1 and �2, below and above
x̄�s�, where either R1�x ,s� or R2�x ,s� is dominant. Therefore,
if in the simulations one could reach values of s and t so
large as to have x̄�s��1, together with a range of x extending
well beyond x̄�s�, one should observe a neat crossover from
aef f

R �x ,s�=a, in a wide interval 1�x� x̄�s� within �1, to the
large-x behavior aef f

R �� ,s�=c, after entering �2. This is visu-
alized in the inset of Fig. 4, displaying the behavior of
aef f

R �x ,s� obtained analytically from Eq. �27�, with the forms
of f�x� and h�x� which will be introduced in Eqs. �32� and
�45�.

The next step is to focus, separately, on the two regions �1
and �2.

1. �1 region

We make the assumption that, with the range of s reached
in the simulations and x�1, we are exploring the lower
boundary of �1, just above the s axis, where R2�x ,s� is neg-
ligible with respect to R1�x ,s� �see Fig. 6�. The consistency
of this hypothesis will be checked a posteriori. Let us, then,
concentrate on the structure of R1�x ,s�. On the basis of ex-
isting analytical and numerical results, as discussed in detail

FIG. 5. �Color online� Magnification of the framed portion of
Fig. 4, showing that the decrease of aef f

R �x ,s� with increasing s
�limited to the first two sets Is� exceeds the error bars for x
2.
Symbols are the same as in Fig. 4.

FIG. 6. �Color online� Shape of the crossover curve computed
from Eq. �31�. The frame delimits the �x ,s� region explored in the
simulations.
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in Ref. �16�, the scaling function in Eq. �5� is expected to be
of the general form

f�x,t0/s� = A
x−�

�x − 1 + t0/s�� �32�

where there appears the dependence on a microscopic time
t0, regularizing f�x , t0 /s� at x=1. This extra dependence on
t0 /s, for s large enough is negligible if x�1, but becomes
crucial at x=1, where it is at the root of the observed discon-
tinuity in the effective exponent. In order to see this, let us
replace Eq. �27� with the more precise form

1 + aef f
R �x,s� = �1 + a��1 + �1/�1 + a�� f̃�x,v� + ��1 + c�/�1 + a��s−�c−a���x,v�

1 + s−�c−a���x,v�
� �33�

where v= t0 /s, ��x ,v�=h�x� / f�x ,v� and the new term

f̃�x,v� = v
�vf�x,v�
f�x,v�

�34�

comes from t0 /s in Eq. �32�. A simple computation yields

f̃�x,v� = �− ��1 −
x − 1

v
� for x − 1 � v ,

− �
v

x − 1
for x − 1 � v , � �35�

which shows that this term modifies the effective exponent
only at x�1, while ��x ,v� keeps the same properties of ��x�,
being finite for any finite x, including x=1, and diverging for
x→�. As a result, for s large but finite, we have

aef f
R �x,s� = �a − � for x = 1,

a for 1 � x � x̄�s� ,

c for x � x̄�s� .
� �36�

In the simulations, the behavior at x=1 can be studied
with great precision. Considering the definition Rag�1,s�
=lim
s→0Rag�1+
s /s ,s�, we have computed Rag�1,s� as
Rag�1+� /s ,s�, using Eq. �20�. This quantity is very easy to
simulate, since good statistics can be obtained with a modest
numerical effort. The results are shown in Fig. 7, where, for
completeness, we have included also the case d=3. The data
show a neat algebraic decay, consistently with the assump-
tion that R2�1,s� is negligible �if the correction was present,
we should have found a crossover between two different
power laws�. Relating the slope to the top line of Eq. �36�,
we find

1 + a − � = 	0.473 ± 0.001 for d = 2,

0.477 ± 0.001 for d = 3.

 �37�

These numbers need a comment. For such a short time
difference ��R and the Barrat conjecture leading to
Eq. �12� is correct, i.e., in the very short time regime the
response function just mirrors the density of defects. Indeed,
we have measured independently the density of defects
��s��L−1�s��s−1/z, finding

1/z = 	0.474 ± 0.001 for d = 2,

0.476 ± 0.001 for d = 3.

 �38�

Therefore, the comparison of Eqs. �37� and �38� leads to the
identification

1/z = 1 + a − � �39�

which is, in fact, what one finds in the exact solution of the
d=1 Ising model �11,12,16� and in the approximate analyti-
cal results at higher dimensionality �13–15�. Analytical theo-
ries based on local scale invariance �24�, instead, yield
�=a+1, in disagreement with our data and with the afore-
mentioned analytical results �31�.

Once the negligibility of R2�x ,s� in the x�1 region is
established, the road to the direct measurement of a is open.
This is done rewriting Eqs. �5� and �32�, for �t−s� /s�1, in
the form

s1+a−�R1�x,s� = A�t − s + t0�−� �40�

which predicts, using Eq. �39�, that in the plot of s1/zR�x ,s�
versus t−s, the curves generated for different s ought to col-
lapse, as long as �t−s� /s�1 is satisfied. We have made such
a plot �Fig. 8� of the data from the simulations and using the
value of z in Eq. �38� we have found very good collapse for

FIG. 7. Plot of Rag�1,s� in d=2 and 3. Straight lines are power
law best fits t−0.473 in d=2 and t−0.477 in d=3.
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�t−s�
70. From the slope of the curve in the region where
there is collapse, we obtain �=0.800±0.005, from which,
via Eqs. �39� and �38�, we get

a = 0.273 ± 0.006 �41�

which is close enough to 1/4 to lend strong support to Eq.
�13�. We emphasize that this result, which has been obtained
from the direct measurement of Rag�t ,s�, reproduces the pre-
vious numerical results obtained for a� from ZFC
�13,16,22,28�. This is a nice check on the validity of Eq.
�14�, which disproves the recent claim �25� that the exponent
a� is unrelated to a. From the same set of data we have
obtained also A=0.153±0.002J−1.

2. �2 region

Clearly, to enter with the simulations so deep into �2 that
R1�x ,s� can be neglected, is much more difficult. Nonethe-
less, the following considerations are in order. Eq. �6� re-
quires that, for a given s, Rag�x ,s� decays as x−�R/z in this
sector. Therefore, the negligibility of R1�x ,s� leads to the
remarkable consequence that this power law behavior is a
property of the correction R2�x ,s� and not of the leading term
R1�x ,s�. The implication is that the large x behaviors of h�x�
and f�x� are given by

h�x� � x−�R/z, �42�

f�x� � x−��+��, �43�

with

� + � � �R/z . �44�

This cannot be accounted for by local scale invariance �24�,
which assumes that the scaling function f�x� of the dominant
term decays like x−�R/z for x�1.

C. Fitting Rag„x ,s…

Let us recapitulate what we have done so far, specifying
the assumptions that we have introduced.

�1� The failure of simple scaling, displayed in Fig. 3, re-
quires one to introduce a correction term. We have assumed
this to have the form of the correction to scaling appearing in
Eq. �26�, with c�a. This is enough to derive the inequality
of Eq. �29�, which solves the problem of the exponent a
formulated in Sec. II.

�2� From the two requirements, aef f
R �1+,s��aef f

R �� ,s�
�� and limx→�Rag�x ,s�=0, follows aef f

R �� ,s�=c and
limx→���x�=�. This, together with the assumption that f�x�
is of the form �32�, yields the value �41� of a and the set of
Eqs. �42�–�44� regulating the large x behavior of the scaling
functions.

In order to complete the functional form of Rag�x ,s�, we
need an additional assumption on R2�x ,s�, since the power
law behavior �42� covers only the large x behavior. However,
for R2�x ,s� there are no analytical results to rely on. Short of
any other hint, we make the simplest possible ansatz

h�x� = Bx−�R/z �45�

which continues the power law behavior �42� also into the
short time region x�1. Then, we arrive at the explicit ana-
lytical expression

Rag�x,s� = As−�1+a� x−�

�x − 1 + v�� + Bs−�1+c�x−�R/z �46�

for Rag�x ,s� in the d=2 Ising model. We do not expect this to
be quantitatively exact; rather with this formula we aim to
capture the gross features of the qualitative behavior. In any
case, the evaluation of the performance of this formula has to
be made a posteriori. The program is �i� to fit the remaining
free parameters in Eq. �46� from the data, �ii� to check how
the predicted values for Rag�x ,s� compare with the numerical
ones, and �iii� to extrapolate to the region of x and s that have
not been reached with the simulations �see Fig. 6�.

Our data do not allow a direct precise determination of �R
because, as Fig. 2 shows, the slope of Rag�x ,s� bears a weak
dependence on x even for the largest values of x reached in
the simulations. Therefore, we take �R=� and �=1.25 �32�
which is consistent, within errors, with the data. For the other
parameters t0, �,B,c we have not found a reliable direct
method to measure them. We have used a four-parameter
fitting routine obtaining B=0.47J−1, c=0.81, t0=0.01,
�=1.1. With these parameters, and �a ,� ,A� determined in
the previous Sec. IV B, Eq. �46� can be plotted. The com-
parison with the numerical data �Fig. 2� is quite good in the
whole range of s and x. This provides the a posteriori sup-
port for the validity of the procedure.

Once f�x ,v� and h�x� are given, from Eq. �33� we get the
analytical form of aef f

R �x ,s�, which can be compared with the
data of Figs. 4 and 5. However, for a meaningful compari-
son, rather than making a straightforward plot of Eq. �33�,
we have extracted the effective exponent from data generated
from Eq. �46�, following the same procedure described in
Sec. IV A; namely, we have computed Rag�x ,s�, from Eq.
�46�, for the same values of s and t considered in the simu-
lations and we have computed aef f

R �x ,s� as the local slope
over the same intervals Is of four values of s appearing in
Fig. 4. The result is displayed in the same Figs. 4 and 5,

FIG. 8. �Color online� Rescaled plot of Rag versus t−s for s
=537, 756, 1085, 1577. Power law best fit in the framed area �t
−s�−0.80.
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where, although a discrete set, these values of aef f
R �x ,s� have

been connected by continous lines, in order to ease the read-
ing of the figures. The comparison shows that the behavior of
aef f

R �x ,s� from Eq. �46� reproduces the numerical data within
errors. However, the size of the error bars prevent from mak-
ing claims other than qualitative. Namely, the agreement dis-
played in Figs. 4 and 5, between the different ways of com-
puting aef f

R �x ,s�, makes us confident that with Eq. �46� we
have captured the basic mechanism underlying the behavior
of Rag�x ,s� in the d=2 Ising model. For a detailed quantita-
tive comparison, data much more precise than those pre-
sented here are needed.

With the aim of completing the qualitative scenario, we
have used Eq. �33� to plot aef f

R �x ,s�, in the inset of Fig. 4,
over ranges of s and x that cannot be accessed in the simu-
lations. The global behavior of aef f

R �x ,s�, obtained in this
way, displays the typical shape of an effective exponent with
the crossover taking place about x̄�s�. For s sufficiently large,
aef f

R �x ,s� remains equal to a in the range 1�x� x̄�s�, which
can be enlarged at will by pushing s to larger values. The
crossover around x̄�s� shows the rise of aef f

R �x ,s� toward c. It
is a very smooth crossover, since it takes roughly three de-
cades for aef f

R �x ,s� to switch from a to c. The growth of x̄�s�
with s is rather slow and a value as large as s�104 is needed
in order to have a reasonably flat behavior aef f

R �x ,s��a for
x� x̄�s�. This explains why the observation of aef f

R �x ,s��a
over a sizable x interval is out of reach in the simulations.

V. INTEGRATED RESPONSE FUNCTIONS

In Eq. �21� we have introduced the general form of the
IRF, which contains the ZFC �7� as a particular case. The aim
of this section is to investigate the impact on the IRF of the
structure �26� of Rag�x ,s�. In particular, we shall have to
understand why the existence of such a strong correction to
scaling in Rag�x ,s� does not surface at the level of ZFC,
where the simple scaling form �9� accounts very well for the
data �16�. We shall not discuss the behavior of TRM because,
as mentioned above and explained in detail in �16,33�, this
quantity is the most unfavorable choice for the analysis of
the scaling properties.

Inserting Eq. �26� into the definition �21� and keeping
track of the dependence on t0, we get

�ag�y,tw� = �1�y,tw� + �2�y,tw� = tw
−aF�y,v� + tw

−cH�y�
�47�

where

F�y,v� = y−a�
1/y

u

z−�1+a���z,v/y�dz , �48�

H�y� = y−c�
1/y

u

z−�1+c�h�1/z�dz , �49�

with y= t / tw, u= t̃ / t, v= t0 / tw, and

��z,v/y� = A
z�+�

�1 − z + v/y�� �50�

comes from Eq. �32� substituting x with 1/z. For simplicity,
we have omitted to indicate explicitly the dependence on the
upper limit of integration u. The effective exponent

aef f
� �y,tw� = − � � ln �ag�y,tw�

� ln tw
�

y

= a�1 + �1/a�F̃�y,v� + �c/a�tw
−�c−a�K�y,v�

1 + tw
−�c−a�K�y,v�

�
�51�

has the same structure of Eq. �33�, with

F̃�y,v� = v
�vF�y,v�
F�y,v�

�52�

and

K�y,v� =
H�y�

F�y,v�
�53�

being the analogs of f̃�x ,v� and ��x ,v�.
There are as many IRFs as there are ways of choosing t̃.

Here, we restrict our attention to the two cases with t̃ / tw=q
and t̃ / t= p, where q and p are fixed numbers. It will be con-
venient to introduce the notation �ag and �ag for these two
particular IRFs. The distinction between the two cases enters
the above formulas in the upper limit of integration in Eqs.
�48� and �49�, where

u = 	q/y for �ag,

p for �ag.

 �54�

We shall now establish the gross features of aef f
� �y , tw�, as y is

varied with fixed tw, using the properties of F̃�y ,v� and
K�y ,v� derived in the Appendix . The behavior of these func-
tions depends on the sign of �−1. With the value of
�=0.80 obtained from the fit of Eq. �40�, we shall make use
only of the results for ��1, leaving the general discussion to
the Appendix .

A. �ag

With y� t̃ / tw=q, where q�1 is some fixed number, y
takes values in �q ,��. From Eqs. �A11� and �A13� in the
Appendix it follows that

F̃��y,v� � 	�v/q�1−� for y = q ,

�v/y� for y � q ,

 �55�

while, from Eqs. �A14� and �A18� it follows that K��y ,v� is
finite for finite y and diverges for y→�. Hence, the effective
exponent

aef f
� �y,tw� = 	a for y � q ,

c for y → �

 �56�

behaves like aef f
R in Eq. �36�, apart from the absence of any

discontinuity at the minimum value of y, since Eq. �55�
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shows that F̃��y ,v� vanishes for all y as tw→�. This is dis-
played in Fig. 9, illustrating the behavior of aef f

� �y , tw� ob-
tained from the simulations with tw in the range �200,400�.

B. �ag

If we keep the ratio fixed t̃ / t= p, with p
1, y takes values
in �1/ p ,��. In this case we obtain an IRF in which the cor-
rection to scaling does not produce the crossover in the ef-
fective exponent from a to c, as observed in the previous
case and in Rag. Rather, aef f

� �y , tw� starts from a and ends up
again at a, as y grows, with a possible discontinuity at
y=1/ p, as will be explained below. The difference comes
from Eq. �A24� in the Appendix , showing that now K��y ,v�
vanishes as y→�. After taking into account that also

F̃��y ,v� vanishes as y→� �see Eq. �A5� in the Appendix �,
this implies

lim
y→�

aef f
� �y,tw� = a . �57�

Around the minimum value y=1/ p, the behavior is different
for p�1 and p=1. In the former case no singularity devel-

ops, since from Eq. �A22� follows that F̃��y=1/ p ,v��v.
Instead in the latter case, which corresponds to ZFC �i.e.,
�ag=�ag for p=1�, from Eq. �A26� we have that at y=1 that
there is a discontinuity in the effective exponent with

aef f
� �1,v,tw� = a − � �58�

exactly as in Eq. �36� at x=1.
The overall behavior of aef f

� �y , tw� is displayed in Fig. 10
obtained by plotting Eq. �51� for fixed tw. The two curves,
corresponding to tw=200 and 2000, display a very fast rise
from a−�=−0.53 at y=1 followed by a very slow approach
to the asymptotic value �57�. The absence of the crossover is
the most prominent qualitative difference with respect to the
inset of Fig. 4, which explains why the correction to scaling
plays a minor role in the analysis of ZFC data. This very
mild increase of aef f

� �y , tw� in the range 1�y
10 is ob-
served also in the simulations �notice the vertical scale in
Fig. 11�.

Furthermore, notice that in Fig. 10 the asymptotic value
is reached from above for tw=200 and from below for
tw=2000. The two curves cross each other, due to the inter-

play of the relative weights of F̃��y ,v� and K��y ,v� as tw is
varied, the former being a negative quantity and the latter a
positive one. Now, the important point is that this particular
feature can be resolved also in the data from the simulations
�Fig. 11�, showing that Eq. �46� does, indeed, account for the
observed behavior of ZFC.

VI. CONCLUSIONS

In this paper we have studied numerically the linear re-
sponse function of the d=2 Ising model quenched below the
critical temperature. The data for Rag show that the simple
scaling form �5�, usually believed to hold in the aging re-
gime, is not obeyed. We have attributed the deviation from
simple scaling to the existence of a correction to scaling
R2�x ,s�, which, in order to explain the observed behavior of
the effective exponent, although subdominant for fixed x and

FIG. 9. �ef f
� �y , tw� for tw in the range from 200 to 400. The

continuous line is the plot from Eq. �51�.
FIG. 10. �Color online� �ef f

� �y , tw� plotted from Eq. �51� with
tw=200 �squares� and 2000 �circles�. The horizontal line corre-
sponds to a=0.273.

FIG. 11. �Color online� Plot of aef f
� �y , tw� from the simulations

for the two sets of tw in the legend. The lines are obtained from the
analytical formula.
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growing s, must become dominant for fixed s and large x.
Then, focusing on the time regime where R2�x ,s� is negli-
gible, we have been able to measure a with good precision
obtaining a=0.273±0.006. This solves the problem of the
exponent a formulated in Sec. II and is in agreement with
previous numerical results from the ZFC. Furthermore, this
value is well consistent with Eq. �13� and confirms the de-
pendence of a on dimensionality, as found in all cases where
analytical results are available.

Awareness of the existence of this correction to scaling is
of fundamental importance when analyzing numerical data,
since an interpretation which does not take into account the
strong dependence of aaf f

R �x ,s� on x may lead to wrong con-
clusions. In particular, if insisting in collapsing the data ac-
cording to Eq. �5�, one would find that the best data collapse
obtains with an exponent whose value is somewhere between
a and c, depending on the range of x considered in the simu-
lations. However, the collapse cannot be satisfactory in the
whole range of x, as Fig. 3 shows. The findings of Chatelain
�17�, perhaps, can be interpreted along these lines. Indeed, in
Ref. �17� the impulsive response function was computed and
the best data collapse was obtained with a=1/2 using data
for rather small values of s. The author did explicitly notice
that the collapse was not perfect and hypothesized himself
the existence of strong corrections to scaling.

We have also investigated the functional form of the scal-
ing function entering R1�x ,s�, and we have found that Eq.
�32� with �=a+1/z, which was proposed in �16� as a gen-
eralization of the known analytical results, compares quite
well with the numerical data. Next, by making the simplest
possible ansatz for R2�x ,s�, we have obtained an analytical
expression for the full Rag. This is quite useful for the inves-
tigation of the overall qualitative behavior and compares sat-
isfactorily well with the data in the time regions reached by
the simulations.

Finally, we have considered the retrieval of the properties
of the impulsive response function from the IRFs. As dis-
cussed in �16�, this may be an issue to treat with care when
dealing with ZFC, due to the presence of t0, which acts as a
dangerous irrelevant variable for ��1 or, equivalently, for
d�dU. However, in this paper we are not concerned with
this aspect of the problem, since d=2 is below dU=3 and we
have �=0.80�1. Nonetheless, recovering the scaling expo-
nent may still be complicated, due to the presence of the
correction R2�t ,s�. In fact, we have found that the relative
importance of this term strongly depends on the kind of re-
sponse function considered. In particular, it is maximal in
Rag�t ,s�, while it is almost negligible for �ag�t ,s�. This im-
plies that �i� by weighting differently R1�t ,s� and R2�t ,s�,
different response functions may behave very differently and
�ii� the best suited function in order to weaken the correction
term and to access the asymptotic properties is �ag�t ,s�.

The rich pattern of behaviors uncovered in this paper
shows that there remains much to be understood of the re-
sponse function in slow relaxation phenomena, even in the
relatively simple case of coarsening systems. Presently, we
do not know how general is the behavior that we have found
in d=2. It would be interesting to perform simulations in
higher dimension to address this point, at least numerically.
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APPENDIX

In order to analyze the behavior of

aef f
� �y,tw� = a�1 + �1/a�F̃�y,v� + �c/a�tw

−�c−a�K�y,v�
1 + tw

−�c−a�K�y,v�
�

�A1�

it is first necessary to study the properties of F̃�y ,v� and
K�y ,v�. Rewriting Eq. �48� as

F�y,v� = Ay−aI��� �A2�

with

I��� = �
1/y

u

dz
z�+�−�1+a�

�1 − z + v/y�� �A3�

we have

�vF�y,v� = − A�y−�1+a�I�� + 1� �A4�

and

F̃�y,v� = − ��v
y
� I�� + 1�

I���
. �A5�

Next, carrying out the integration in �49�, we can write

K�y,v� = B ya−c

I���
�u�R/z−c − yc−�R/z� �A6�

where B=B /A��R /z−c�.
The integral I��� is a finite function of v /y everywhere,

except at v /y=0, where a singularity develops if ��1 and
u→1. In order to see this, let us separate in I��� the contri-
bution coming from the neighborhood of the upper limit of
integration, by writing I���= I0+ Iu, which corresponds to the
partition of the domain of integration

�
1/y

u

= �
1/y

u−�

+ �
u−�

u

�A7�

where � is a small number. The first contribution I0 is always
finite, while

Iu = �
u−�

u

dz
z�+�−�1+a�

�1 − z + v/y�� �
u�+�−�1+a�

1 − �
��1 − u + � + v/y�1−�

− �1 − u + v/y�1−�� �A8�

is finite for u�1, but diverges for u=1 and v /y→�, if
��1, yielding
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I��� � �
�� for � � 1,

−
1

ln�v/y�
for � = 1,

1

� − 1
�v/y�1−� for � � 1.� �A9�

Going through similar steps, one can see that also I��+1� is
always finite for u�1, while for u=1 and small v /y

I�� + 1� �
1

�
�v/y�−�. �A10�

Therefore, from Eq. �A5� and for u�1 we have

F̃�y,v� � − �v/y� �A11�

while for u=1

F̃�y,v� � �
− �v/y�1−� for � � 1,

1

ln�v/y�
for � = 1,

1 − � for � � 1.
� �A12�

The above results hold in general. In the following we con-
tinue separately the discussion of �ag and �ag.

1. �ag

With 1�q
y and u=q /y, the integration domain
�1/y ,q /y� in Eqs. �48� and �49� includes u=1 only when y
takes the smallest possible value y=q. Therefore, from Eq.
�A12� we obtain

F̃��q,v� � �
− �v/q�1−� for � � 1,

1

ln�v/q�
for � = 1,

1 − � for � � 1,
� �A13�

while from Eqs. �A6� and �A9�

K��q,v� � �
�� for � � 1,

−
1

ln�v/q�
for � = 1,

�v/q��−1 for � � 1.
� �A14�

Inserting these results into Eq. �A1�, for the effective expo-
nent at y=q we get

lim
tw→�

aef f
� �q,tw� = 	a for � � 1,

a + 1 − � = 1/z for � � 1.



�A15�

Instead, for y�q, since F̃�y ,v� obeys Eq. �A11� and K��y ,v�
is finite, we get

lim
tw→�

aef f
� �y,tw� = a �A16�

independently of the sign of �−1. However, care must be
used when y→�, because the domain of integration in Eq.
�A3� shrinks to zero and I��� vanishes like

I��� � ya−��+�� �A17�

yielding

K��y,v� � y�+�−�R/z. �A18�

Therefore, from Eq. �44� it follows that K��y ,v� diverges for
large y and, in turn, this gives the noncommutativity of the
limits limy→� and limtw→�, since keeping tw fixed

lim
y→�

aef f
� �y,tw� = c �A19�

while with y�q fixed

lim
tw→�

aef f
� �y,tw� = a . �A20�

2. �ag

The integration domain �1/y , p� in Eqs. �48� and �49� is
given by �1/y , p�, with y�1/ p. Therefore, the upper limit of
integration u=1 is not reached if p�1, while it is reached if
p=1. Furthermore, as y hits the lowest value y=1/ p, the
integration domain shrinks to zero and to first order in
�y−1/ p�

I��� = p2+�+�−�1+a��1 − p�1 − v��−��y − 1/p� �A21�

from which follows

lim
y→1/p

F̃��y,v� = − �
pv

1 − p + pv
. �A22�

Notice, also, that from Eq. �A6� we get

K��y,v� =
B

I���
�p�R/z−cya−c − ya−�R/z� �A23�

where both the exponents of y in the right hand side are
negative. Hence, for fixed tw

lim
y→�

K��y,v� = 0, �A24�

contrary to what happens in the case of �ag, where the limit
for y→� produces a divergence. Let us proceed by consid-
ering separately p�1 and p=1.

a. p�1

In this case u�1 for all y and I��� does not develop any
singularity. From Eqs. �A11�, �A22�, and �A23� it then fol-
lows that

lim
tw→�

aef f
� �y,tw� = a �A25�

for all y.

b. p=1

From Eq. �A22�, at y=1 we have

F̃��1,v� = − � �A26�

while for y�1 Eq. �A12� applies. Switching to the behavior
of K��y ,v�, notice that by inserting Eq. �A9� into Eq. �A23�
we obtain

CORBERI, LIPPIELLO, AND ZANNETTI PHYSICAL REVIEW E 72, 056103 �2005�

056103-12



K��y,v� � �
ya−c − ya−�R/z for � � 1,

−
ya−c − ya−�R/z

ln�v/q�
for � = 1,

�ya−c − ya−�R/z��v/q��−1 for � � 1.
�
�A27�

Using these results, for fixed y we get

lim
tw→�

aef f
� �y,tw� = �a − � = 1/z − 1 for y = 1,

a for y � 1 and � � 1,

a + 1 − � = 1/z for y � 1 and � � 1,
�

�A28�

while for fixed tw

lim
y→�

aef f
� �y,tw� = 	a for � � 1,

a + 1 − � = 1/z for � � 1.



�A29�

Finally, let us recall that from Eqs. �13� and �39� we have

� − 1 =
1

z

d − dU

dU − dL
�A30�

which shows how the sign of �−1 changes with the
dimensionality.
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